Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 19 de 19
Filter
Add more filters










Publication year range
1.
Adv Sci (Weinh) ; : e2305832, 2024 Apr 02.
Article in English | MEDLINE | ID: mdl-38564766

ABSTRACT

Effective presentation of antigens by dendritic cells (DC) is essential for achieving a robust cytotoxic T lymphocytes (CTLs) response, in which cDC1 is the key DC subtype for high-performance activation of CTLs. However, low cDC1 proportion, complex process, and high cost severely hindered cDC1 generation and application. Herein, the study proposes an in situ cDC1 recruitment and activation strategy with simultaneous inhibiting cancer stemness for inducing robust CTL responses and enhancing the anti-tumor effect. Fms-like tyrosine kinase 3 ligand (FLT3L), Poly I:C, and Nap-CUM (NCUM), playing the role of cDC1 recruitment, cDC1 activation, inducing antigen release and decreasing tumor cell stemness, respectively, are co-encapsulated in an in situ hydrogel vaccine (FP/NCUM-Gel). FP/NCUM-Gel is gelated in situ after intra-tumoral injection. With the near-infrared irradiation, tumor cell immunogenic cell death occurred, tumor antigens and immunogenic signals are released in situ. cDC1 is recruited to tumor tissue and activated for antigen cross-presentation, followed by migrating to lymph nodes and activating CTLs. Furthermore, tumor cell stemness are inhibited by napabucasin, which can help CTLs to achieve comprehensive tumor killing. Collectively, the proposed strategy of cDC1 in situ recruitment and activation combined with stemness inhibition provides great immune response and anti-tumor potential, providing new ideas for clinical tumor vaccine design.

2.
J Nanobiotechnology ; 22(1): 137, 2024 Mar 29.
Article in English | MEDLINE | ID: mdl-38553725

ABSTRACT

Immune checkpoint inhibitors (ICIs) combined with antiangiogenic therapy have shown encouraging clinical benefits for the treatment of unresectable or metastatic hepatocellular carcinoma (HCC). Nevertheless, therapeutic efficacy and wide clinical applicability remain a challenge due to "cold" tumors' immunological characteristics. Tumor immunosuppressive microenvironment (TIME) continuously natural force for immune escape by extracellular matrix (ECM) infiltration, tumor angiogenesis, and tumor cell proliferation. Herein, we proposed a novel concept by multi-overcoming immune escape to maximize the ICIs combined with antiangiogenic therapy efficacy against HCC. A self-delivery photothermal-boosted-NanoBike (BPSP) composed of black phosphorus (BP) tandem-augmented anti-PD-L1 mAb plus sorafenib (SF) is meticulously constructed as a triple combination therapy strategy. The simplicity of BPSP's composition, with no additional ingredients added, makes it easy to prepare and presents promising marketing opportunities. (1) NIR-II-activated BPSP performs photothermal therapy (PTT) and remodels ECM by depleting collagen I, promoting deep penetration of therapeutics and immune cells. (2) PTT promotes SF release and SF exerts anti-vascular effects and down-regulates PD-L1 via RAS/RAF/ERK pathway inhibition, enhancing the efficacy of anti-PD-L1 mAb in overcoming immune evasion. (3) Anti-PD-L1 mAb block PD1/PD-L1 recognition and PTT-induced ICD initiates effector T cells and increases response rates of PD-L1 mAb. Highly-encapsulated BPSP converted 'cold' tumors into 'hot' ones, improved CTL/Treg ratio, and cured orthotopic HCC tumors in mice. Thus, multi-overcoming immune escape offers new possibilities for advancing immunotherapies, and photothermal/chemical/immune synergistic therapy shows promise in the clinical development of HCC.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , Animals , Mice , Carcinoma, Hepatocellular/metabolism , Liver Neoplasms/metabolism , B7-H1 Antigen/metabolism , Photothermal Therapy , Sorafenib/pharmacology , Cell Line, Tumor , Tumor Microenvironment
3.
Adv Sci (Weinh) ; 11(9): e2305275, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38110834

ABSTRACT

Tumor immune escape caused by low levels of tumor immunogenicity and immune checkpoint-dependent suppression limits the immunotherapeutic effect. Herein, a "two-way regulation" epigenetic therapeutic strategy is proposed using a novel nano-regulator that inhibits tumor immune escape by upregulating expression of tumor-associated antigens (TAAs) to improve immunogenicity and downregulating programmed cell death 1 ligand 1 (PD-L1) expression to block programmed death-1 (PD-1)/PD-L1. To engineer the nano-regulator, the DNA methyltransferase (DNMT) inhibitor zebularine (Zeb) and the bromodomain-containing protein 4 (BRD4) inhibitor JQ1 are co-loaded into the cationic liposomes with condensing the toll-like receptor 9 (TLR9) agonist cytosine-phosphate-guanine (CpG) via electrostatic interactions to obtain G-J/ZL. Then, asparagine-glycine-arginine (NGR) modified material carboxymethyl-chitosan (CMCS) is coated on the surface of G-J/ZL to construct CG-J/ZL. CG-J/ZL is shown to target tumor tissue and disassemble under the acidic tumor microenvironment (TME). Zeb upregulated TAAs expression to improve the immunogenicity; JQ1 inhibited PD-L1 expression to block immune checkpoint; CpG promote dendritic cell (DC) maturation and reactivated the ability of tumour-associated macrophages (TAM) to kill tumor cells. Taken together, these results demonstrate that the nano-regulator CG-J/ZL can upregulate TAAs expression to enhance T-cell infiltration and downregulate PD-L1 expression to improve the recognition of tumor cells by T-cells, representing a promising strategy to improve antitumor immune response.


Subject(s)
B7-H1 Antigen , Tumor Escape , B7-H1 Antigen/metabolism , Nuclear Proteins/genetics , Transcription Factors/genetics , Antigens, Neoplasm , Epigenesis, Genetic
4.
Pharmaceutics ; 15(12)2023 Dec 13.
Article in English | MEDLINE | ID: mdl-38140108

ABSTRACT

Nano-delivery systems have demonstrated great promise in the therapy of cancer. However, the therapeutic efficacy of conventional nanomedicines is hindered by the clearance of the blood circulation system and the physiological barriers surrounding the tumor. Inspired by the unique capabilities of cells within the body, such as immune evasion, prolonged circulation, and tumor-targeting, there has been a growing interest in developing cell membrane biomimetic nanomedicine delivery systems. Cell membrane modification on nanoparticle surfaces can prolong circulation time, activate tumor-targeting, and ultimately improve the efficacy of cancer treatment. It shows excellent development potential. This review will focus on the advancements in various cell membrane nano-drug delivery systems for cancer therapy and the obstacles encountered during clinical implementation. It is hoped that such discussions will inspire the development of cell membrane biomimetic nanomedical systems.

5.
Nanomicro Lett ; 15(1): 145, 2023 Jun 03.
Article in English | MEDLINE | ID: mdl-37269391

ABSTRACT

Immunotherapy has become a promising research "hotspot" in cancer treatment. "Soldier" immune cells are not uniform throughout the body; they accumulate mostly in the immune organs such as the spleen and lymph nodes (LNs), etc. The unique structure of LNs provides the microenvironment suitable for the survival, activation, and proliferation of multiple types of immune cells. LNs play an important role in both the initiation of adaptive immunity and the generation of durable anti-tumor responses. Antigens taken up by antigen-presenting cells in peripheral tissues need to migrate with lymphatic fluid to LNs to activate the lymphocytes therein. Meanwhile, the accumulation and retaining of many immune functional compounds in LNs enhance their efficacy significantly. Therefore, LNs have become a key target for tumor immunotherapy. Unfortunately, the nonspecific distribution of the immune drugs in vivo greatly limits the activation and proliferation of immune cells, which leads to unsatisfactory anti-tumor effects. The efficient nano-delivery system to LNs is an effective strategy to maximize the efficacy of immune drugs. Nano-delivery systems have shown beneficial in improving biodistribution and enhancing accumulation in lymphoid tissues, exhibiting powerful and promising prospects for achieving effective delivery to LNs. Herein, the physiological structure and the delivery barriers of LNs were summarized and the factors affecting LNs accumulation were discussed thoroughly. Moreover, developments in nano-delivery systems were reviewed and the transformation prospects of LNs targeting nanocarriers were summarized and discussed.

6.
ACS Nano ; 17(14): 13611-13626, 2023 07 25.
Article in English | MEDLINE | ID: mdl-37326384

ABSTRACT

The cancer-associated fibroblast (CAF) barrier in pancreatic ductal adenocarcinoma (PDAC) greatly restricts clinical outcomes. Major obstacles to PDAC treatment include restricted immune cell infiltration and drug penetration and the immunosuppressive microenvironment. Here, we reported a "shooting fish in a barrel" strategy by preparing a lipid-polymer hybrid drug delivery system (PI/JGC/L-A) that could overcome the CAF barrier by turning it into a "barrel" with antitumor drug depot properties to alleviate the immunosuppressive microenvironment and increase immune cell infiltration. PI/JGC/L-A is composed of a pIL-12-loaded polymeric core (PI) and a JQ1 and gemcitabine elaidate coloaded liposomal shell (JGC/L-A) that has the ability to stimulate exosome secretion. By normalizing the CAF barrier to create a CAF "barrel" with JQ1, stimulating the secretion of gemcitabine-loaded exosomes from the CAF "barrel" to the deep tumor site, and leveraging the CAF "barrel" to secrete IL-12, PI/JGC/L-A realized effective drug delivery to the deep tumor site, activated antitumor immunity at the tumor site, and produced significant antitumor effects. In summary, our strategy of transforming the CAF barrier into antitumor drug depots represents a promising strategy against PDAC and might benefit the treatment of any tumors facing a drug delivery barrier.


Subject(s)
Antineoplastic Agents , Cancer-Associated Fibroblasts , Carcinoma, Pancreatic Ductal , Pancreatic Neoplasms , Animals , Pharmaceutical Preparations , Pancreatic Neoplasms/drug therapy , Pancreatic Neoplasms/pathology , Carcinoma, Pancreatic Ductal/drug therapy , Carcinoma, Pancreatic Ductal/pathology , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Immunotherapy , Tumor Microenvironment , Cell Line, Tumor , Pancreatic Neoplasms
7.
Acta Pharm Sin B ; 13(4): 1740-1754, 2023 Apr.
Article in English | MEDLINE | ID: mdl-37139406

ABSTRACT

Cancer immunotherapy has become a promising strategy. However, the effectiveness of immunotherapy is restricted in "cold tumors" characterized with insufficient T cells intratumoral infiltration and failed T cells priming. Herein, an on-demand integrated nano-engager (JOT-Lip) was developed to convert cold tumors to hot via "increased DNA damage and dual immune checkpoint inhibition" strategy. JOT-Lip was engineered by co-loading oxaliplatin (Oxa) and JQ1 into liposomes with T-cell immunoglobulin mucin-3 antibodies (Tim-3 mAb) coupled on the liposomal surface by metalloproteinase-2 (MMP-2)-sensitive linker. JQ1 inhibited DNA repair to increase DNA damage and immunogenic cell death (ICD) of Oxa, thus promoting T cells intratumoral infiltration. In addition, JQ1 inhibited PD-1/PD-L1 pathway, achieving dual immune checkpoint inhibition combining with Tim-3 mAb, thus effectively promoting T cells priming. It is demonstrated that JOT-Lip not only increased DNA damage and promoted the release of damage-associated molecular patterns (DAMPs), but also enhanced T cells intratumoral infiltration and promoted T cell priming, which successfully converted cold tumors to hot and showed significant anti-tumor and anti-metastasis effects. Collectively, our study provides a rational design of an effective combination regimen and an ideal co-delivery system to convert cold tumors to hot, which holds great potential in clinical cancer chemoimmunotherapy.

8.
Nat Commun ; 14(1): 2248, 2023 04 19.
Article in English | MEDLINE | ID: mdl-37076492

ABSTRACT

Targeting tumour immunosuppressive microenvironment is a crucial strategy in immunotherapy. However, the critical role of the tumour lymph node (LN) immune microenvironment (TLIME) in the tumour immune homoeostasis is often ignored. Here, we present a nanoinducer, NIL-IM-Lip, that remodels the suppressed TLIME via simultaneously mobilizing T and NK cells. The temperature-sensitive NIL-IM-Lip is firstly delivered to tumours, then directed to the LNs following pH-sensitive shedding of NGR motif and MMP2-responsive release of IL-15. IR780 and 1-MT induces immunogenic cell death and suppress regulatory T cells simultaneously during photo-thermal stimulation. We demonstrate that combining NIL-IM-Lip with anti-PD-1 significantly enhances the effectiveness of T and NK cells, leading to greatly suppressed tumour growth in both hot and cold tumour models, with complete response in some instances. Our work thus highlights the critical role of TLIME in immunotherapy and provides proof of principle to combine LN targeting with immune checkpoint blockade in cancer immunotherapy.


Subject(s)
Liposomes , Neoplasms , Humans , Nanomedicine , Temperature , Neoplasms/therapy , Neoplasms/pathology , Lymph Nodes/pathology , Tumor Microenvironment , Immunotherapy
9.
Biomaterials ; 297: 122104, 2023 06.
Article in English | MEDLINE | ID: mdl-37058898

ABSTRACT

Cytotoxic T lymphocytes (CTLs) are central effector cells in antitumor immunotherapy. However, the complexity of immunosuppressive factors in the immune system contributes to the low response rates of current CTL-based immunotherapies. Here, we propose a novel holistic strategy including a priming response, promoting activity, and relieving suppression of CTLs, aiming to strengthen the effect of personalized postoperative autologous nanovaccines. The nanovaccine (C/G-HL-Man) fused the autologous tumor cell membrane with dual adjuvants (CpG and cGAMP), and could effectively accumulate in lymph nodes and promote antigen cross presentation by dendritic cells to prime a sufficient specific-CTL response. The PPAR-α agonist fenofibrate was used to regulate T-cell metabolic reprogramming to promote antigen-specific CTLs activity in the harsh metabolic tumor microenvironment. Finally, the PD-1 antibody was used to relieve the suppression of specific-CTLs in the immunosuppressive tumor microenvironment. In vivo, the C/G-HL-Man exhibited strong antitumor effect in the B16F10 murine tumor prevention model and the B16F10 postoperative recurrence model. In particular, combination therapy with nanovaccines, fenofibrate, and PD-1 antibody effectively inhibited the progression of recurrent melanoma and prolonged the survival time. Our work highlights the critical role of the T-cell metabolic reprogramming and PD-1 blocking in autologous nanovaccines, offering a novel strategy for strengthening the function of CTLs.


Subject(s)
Fenofibrate , Melanoma , Animals , Mice , Antibodies/pharmacology , Fenofibrate/pharmacology , Immunotherapy , Programmed Cell Death 1 Receptor , T-Lymphocytes, Cytotoxic , Tumor Microenvironment
10.
Adv Sci (Weinh) ; 9(27): e2201834, 2022 09.
Article in English | MEDLINE | ID: mdl-35918610

ABSTRACT

Photothermal therapy (PTT) is a promising strategy for cancer treatment, but its clinical application relies heavily on accurate tumor positioning and effective combination. Nanotheranostics has shown superior application in precise tumor positioning and treatment, bringing potential opportunities for developing novel PTT-based therapies. Here, a nanotheranostic agent is proposed to enhance magnetic resonance imaging (MRI)/ near-infrared fluorescence imaging (NIRFI) imaging-guided photo-induced triple-therapy for cancer. Thermosensitive liposomes co-loaded with SPIONs/IR780 and Abemaciclib (SIA-TSLs), peptide ACKFRGD, and click group 2-cyano-6-amino-benzothiazole (CABT) are co-modified on the surface of SIA-TSLs to form SIA-αTSLs. ACKFRGD can be hydrolyzed to expose the 1, 2-thiolamino groups in the presence of cathepsin B in tumors, which click cycloaddition with the cyano group on CABT, resulting in the formation of SIA-αTSLs aggregates. The aggregation of SIA-αTSLs in tumors enhances the MRI/NIRFI imaging capability and enables precise PTT. Photo-induced triple-therapy enhances precision cancer therapy. First, PTT ablates specific tumors and induces ICD via localized photothermal. Second, local tumor heating promotes the rupture of SIA-αTSLs, which release Abemaciclib to block the tumor cell cycle and inhibit Tregs proliferation. Third, injecting GM-CSF into tumor tissue leads to recruitment of dendritic cells and initiation of antitumor immunity. Collectively, these results present a promising nanotheranostic strategy for future cancer therapy.


Subject(s)
Granulocyte-Macrophage Colony-Stimulating Factor , Neoplasms , Aminopyridines , Benzimidazoles , Cathepsin B , Humans , Liposomes , Neoplasms/diagnostic imaging , Neoplasms/therapy , Theranostic Nanomedicine/methods
11.
ACS Appl Mater Interfaces ; 14(18): 20628-20640, 2022 May 11.
Article in English | MEDLINE | ID: mdl-35477252

ABSTRACT

In recent years, therapeutic strategies based on macrophages have been inspiringly developed, but due to the high intricacy and immunosuppression of the tumor microenvironment, the widespread use of these strategies still faces significant challenges. Herein, an artificial assembled macrophage concept (AB@LM) was presented to imitate the main antitumor abilities of macrophages of tumor targeting, promoting the antitumor immunity, and direct tumor-killing effects. The artificial assembled macrophage (AB@LM) was prepared through an extrusion method, which is to fuse the macrophage membrane with abemaciclib and black phosphorus quantum dot (BPQD)-loaded liposomes. AB@LM showed good stability and tumor targeting ability with the help of macrophage membrane. Furthermore, AB@LM reversed the immunosuppressive tumor microenvironment by inhibiting regulatory T cells (Tregs) and stimulating the maturation of antigen-presenting cells to activate the antitumor immune response through triggering an immunogenic cell death effect. More importantly, in the colorectal tumor model in vivo, a strong cooperative therapeutic effect of photo/chemo/immunotherapy was observed with high tumor inhibition rate (95.3 ± 2.05%). In conclusion, AB@LM exhibits excellent antitumor efficacy by intelligently mimicking the abilities of macrophages. A promising therapeutic strategy for tumor treatment based on imitating macrophages was provided in this study.


Subject(s)
Colorectal Neoplasms , Cyclin-Dependent Kinase 6/antagonists & inhibitors , Nanoparticles , Quantum Dots , Cell Line, Tumor , Colorectal Neoplasms/drug therapy , Cyclin-Dependent Kinase 4/pharmacology , Humans , Immunotherapy , Macrophages , Phosphorus/pharmacology , Quantum Dots/therapeutic use , Tumor Microenvironment
12.
Adv Sci (Weinh) ; 9(9): 2101472, 2022 03.
Article in English | MEDLINE | ID: mdl-35356152

ABSTRACT

Eliminating primary tumor ("roots") and inhibiting associated-circulating tumor cells (associated-CTCs, "seeds") are vital issues that need to be urgently addressed in cancer therapy. Associated-CTCs, which include single CTCs, CTC clusters, and CTC-neutrophil clusters, are essential executors in metastasis and the cause of metastasis-related death in cancer patients. Herein, a "roots and seeds" multipoint costriking nanodevice (GV-Lipo/sorafenib (SF)/digitoxin (DT)) is developed to eliminate primary tumors and inhibit the spread of associated-CTCs for enhancing metastasis inhibition and the therapeutic effect on hepatocellular carcinoma (HCC). GV-Lipo/SF/DT eliminates primary tumor cells by the action of SF, thus reducing CTC production at the roots and improving the therapeutic effect on HCC. GV-Lipo/SF/DT inhibits associated-CTCs effectively via the enhanced identification and capture effects of glypican-3 and/or vascular cell adhesion molecule 1 (VCAM1) targeting, dissociating CTC clusters using DT, blocking the formation of CTC-neutrophil clusters using anti-VCAM1 monoclonal antibody, and killing CTCs with SF. It is successfully verified that GV-Lipo/SF/DT increases the CTC elimination efficiency in vivo, thus effectively preventing metastasis, and shows enhanced antitumor efficacy in both an H22-bearing tumor model and orthotopic HCC models. Overall, the "roots and seeds" multipoint costriking strategy may open a new cancer treatment model for the clinic.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , Neoplastic Cells, Circulating , Carcinoma, Hepatocellular/drug therapy , Cell Count , Cell Line, Tumor , Humans , Liver Neoplasms/drug therapy , Neoplastic Cells, Circulating/metabolism , Neoplastic Cells, Circulating/pathology
13.
ACS Nano ; 16(3): 4263-4277, 2022 03 22.
Article in English | MEDLINE | ID: mdl-35179349

ABSTRACT

Tumor infiltrating B cells (TIBs)-dependent immunotherapy has emerged as a promising method for tumor treatment. Depleting TIBs to boost antitumor immunity is a highly desirable yet challenging approach to TIBs-dependent immunotherapy. Herein, a tumor immune-microenvironment reshaped hybrid nanocage CPN-NLI/MLD coloaded with the Bruton's tyrosine kinase inhibitor ibrutinib, and cytotoxic drug docetaxel was developed for stepwise targeting TIBs and tumor cells, respectively. The tumor microenvironment responsive CPN-NLI/MLD promoted charge reversal and size reduction under acidic conditions (pH < 6.5). The accumulation of CPN-NLI/MLD in tumor tissues was achieved through CD13 targeting, and cellular uptake was increased due to the differ-targeting delivery. Targeting of docetaxel to tumor cells was achieved by the interaction of α-MSH modified on inner docetaxel-particle MLD and melanocortin-1 receptor on the surface of tumor cells. Targeting of ibrutinib to TIBs was achieved by the interaction of Neu5Ac modified on inner ibrutinib-particle NLI and CD22 on the surface of TIBs. The boosted antitumor immunity was achieved mainly by the inhibition of Bruton's tyrosine kinase activation mediated by ibrutinib, which reduced the proportion of TIBs, enhanced infiltration of CD8+ and CD4+ T cells, increased the secretion of immunogenic cytokines including IL-2 and IFN-γ, and inhibited the proliferation of regulatory T cells and secretion of immunosuppressive cytokines including IL-10, IL-4, and TGF-ß. Furthermore, CPN-NLI/MLD improved the antitumor efficiency of chemoimmunotherapy by reshaping tumor immune-microenvironment by TIBs depletion. Taken together, CPN-NLI/MLD represents a promising method for effective tumor treatment and combination therapy by TIBs-dependent immunotherapy.


Subject(s)
Neoplasms , Tumor Microenvironment , Cell Line, Tumor , Cytokines , Docetaxel/pharmacology , Docetaxel/therapeutic use , Humans , Immunotherapy , Neoplasms/drug therapy
14.
J Control Release ; 336: 621-634, 2021 08 10.
Article in English | MEDLINE | ID: mdl-34246701

ABSTRACT

Immune checkpoint antibodies have emerged as novel therapeutics, while many patients are refractory. Researchers had identified tumor-associated macrophages (TAMs) is the pivotal factor involved in immune resistance and that manipulation of TAMs functions would improve the immunotherapies effectively. NF-κB pathway was one of the master regulators in TAMs manipulation. Inhibition of NF-κB pathway could achieve both re-polarization M2 TAMs and downregulation the expression of programmed cell death protein 1 (PD-1) ligand 1 (PD-L1) on TAMs to improve the effect of immunotherapies. Here, IMD-0354, inhibitor of NF-κB pathway was loaded in mannose modified lipid nanoparticles (M-IMD-LNP). Then, PD-1 antibody and M-IMD-LNP were co-loaded in matrix metalloproteinase 2 (MMP2) responsive and tumor target nanogels (P/ML-NNG). P/ML-NNG could co-deliver drugs to tumor site, disintegrated by MMP2 and release drugs to different targets. Evaluation of PD-1 expression, inhibition of NF-κB pathway, expression of PD-L1 on M2 TAMs and M2 TAMs re-polarization demonstrated that P/ML-NNG could block the PD-1/PD-L1 and NF-κB pathways simultaneously. Evaluation of CD4 + T cells, CD8 + T cells, Tregs, cytokines and antitumor immunity confirmed that IMD-0354 could improve the immunotherapies effectively. Those results provided forceful references for tumor immunetherapy.


Subject(s)
Matrix Metalloproteinase 2 , Tumor-Associated Macrophages , Humans , Immunotherapy , NF-kappa B , Tumor Microenvironment
15.
Asian J Pharm Sci ; 16(2): 192-202, 2021 Mar.
Article in English | MEDLINE | ID: mdl-33995613

ABSTRACT

To improve therapeutic effect and reduce severely side effects of carboplatin (CBP), the gas-generating nanocapsules were developed to accelerate CBP lysosome release and nucleus delivery. CBP/SB-NC was prepared by co-loading CBP and NaHCO3 (SB) in nanocapsules using w/o/w emulsification solvent evaporation. They exhibited vesicle-like spherical morphology, uniform particle size and negative zeta potential. Reaching the tumor site with a relatively high concentration is the first step for CBP delivery and the results showed that CBP/SB-NC could effectively increase drug accumulation at tumor site. After that, the drug delivery carriers need to be internalized into tumor cells and the in vitro cellular uptake ability results showed CBP/SB-NC could be internalized into RM-1 cells more efficient than CBP solution. After internalized by RM-1 cells, the gas-blasting release process was tested in acid environment. It was demonstrated that 5 mg/ml NaHCO3 was optimal to achieve pH-responsive gas-blasting release. In vitro release results showed that CBP significantly rapid release in acid environment (pH 5.0) compared to neutral pH (pH 7.4) (P < 0.05). Meanwhile, TEM and the change of the concentration of H+ results exhibited that the explosion of CBP/SB5-NC was more easily happened in lysosome acid environment (pH 5.0). The blasting release can accelerate CBP lysosome release to cytoplasm. Furthermore, the nucleus delivery results showed CBP/SB5-NC can promote pH-triggered rapid nucleus delivery. And the results of Pt-DNA adduct assay showed that the binding efficiency between CBP and DNA of CBP/SB5-NC was higher than CBP solution. At last, in vitro and in vivo anti-tumor efficacy proved that CBP/SB5-NC could enhance anti-tumor activity for prostate cancer therapy. CBP/SB5-NC also showed superior safety in vitro and in vivo by hemolysis assay and histopathological study. All of the results demonstrate that CBP/SB5-NC would be an efficient gas-blasting release formulation to enhance prostate cancer treatment.

16.
ACS Appl Mater Interfaces ; 13(19): 22213-22224, 2021 May 19.
Article in English | MEDLINE | ID: mdl-33955746

ABSTRACT

Lymph nodes are the main sites for immune activation and surveillance. Effective delivery of immunomodulators into lymph nodes to trigger antitumor immunity is essential for cancer treatment. Here, we propose a lymph node delivery strategy to modulate the immune response by activating cytotoxic T lymphocytes (CTLs) and natural killer (NK) cells simultaneously. Novel pH/redox dual-sensitive micelles were prepared using poly(l-histidine)-poly(ethylene glycol) (PLH-PEG) as a skeleton, which can effectively deliver immunomodulators to the lymph nodes due to their suitable particle size. At 48 h after subcutaneous injection, the accumulation efficiency in lymph nodes increased 8.12-fold compared with the control group. Subsequently, Trp2/CpG-coloaded pH/redox dual-sensitive micelles (Trp2/CpG-NPs) acted on antigen-presenting cells, fully promoting CTL activation through dendritic cell antigen cross-presentation and macrophage repolarization. IL-15-loaded pH/redox dual-sensitive micelles (IL-15-NPs) were developed to activate the killing effect of NK cells by interacting with IL-15 receptors. In the tumor-bearing mice model, this lymph node delivery strategy showed significant antitumor efficiency and the tumor inhibition rate reached 93.76%. Meanwhile, the infiltration of CTLs and NK cells in tumor tissues increased, and the immunosuppressive microenvironment was relieved by the repolarization of macrophages from M2-type to M1-type. Overall, this study highlighted the potential of the lymph node delivery strategy for cancer immunotherapy.


Subject(s)
Immunotherapy/methods , Killer Cells, Natural/immunology , Lymph Nodes/immunology , Lymphocyte Activation , Neoplasms/therapy , T-Lymphocytes, Cytotoxic/immunology , Animals , Cell Line, Tumor , Female , Humans , Mice , Mice, Inbred C57BL , Xenograft Model Antitumor Assays
17.
Adv Sci (Weinh) ; 7(18): 2000906, 2020 Sep.
Article in English | MEDLINE | ID: mdl-32999836

ABSTRACT

Combination therapy is a current hot topic in cancer treatment. Multiple synergistic effects elicited by combined drugs are essential in improving antitumor activity. Herein, a pH-triggered charge and size dual switchable nanocage co-loaded with abemaciclib and IMD-0354 (PA/PI-ND) is reported, exhibiting a novel triple-interlocked combination of chemotherapy, immunotherapy, and chemoimmunotherapy. The charge reversal polymer NGR-poly(ethylene glycol)-poly(l-lysine)-dimethylmaleic anhydride (NGR-PEG-PLL-DMA, ND) in PA/PI-ND promotes the pH-triggered charge reversal from negative to positive and size reduction from about 180 to 10 nm in an acidic tumor microenvironment, which greatly enhances cellular uptake and tumor tissue deep penetration. With the PA/PI-ND triple-interlocked combination therapy, the chemotherapeutic effect is enhanced by the action of abemaciclib to induce cell cycle arrest in the G1 phase, together with the reduction in cyclin D levels caused by IMD-0354. The dual anti-tumor promoting immunotherapy is achieved by abemaciclib selectively inhibiting the proliferation of regulatory T cells (Tregs) and by IMD-0354 promoting tumor-associated macrophage (TAM) repolarization from an M2 to M1 phenotype. Furthermore, PA/PI-ND has improved anti-tumor efficiency resulting from the third synergistic effect provided by chemoimmunotherapy. Taken together, PA/PI-ND is a promising strategy to guide the design of future drug delivery carriers and cancer combination therapy.

18.
ACS Appl Mater Interfaces ; 12(34): 38499-38511, 2020 Aug 26.
Article in English | MEDLINE | ID: mdl-32805954

ABSTRACT

The tumor penetration of nanomedicines constitutes a great challenge in the treatment of solid tumors, leading to the highly compromised therapeutic efficacy of nanomedicines. Here, we developed small morph nanoparticles (PDMA) by modifying polyamidoamine (PAMAM) dendrimers with dimethylmaleic anhydride (DMA). PDMA achieved deep tumor penetration via an active, energy-dependent, caveolae-mediated transcytosis, which circumvented the obstacles in the process of deep penetration. PDMA remained negatively charged under normal physiological conditions and underwent rapid charge reversal from negative to positive under acidic conditions in the tumor microenvironment (pH < 6.5), which enhanced their uptake by tumor cells and their deep penetration into tumor tissues in vitro and in vivo. The deep tumor penetration of PDMA was achieved mainly by caveolae-mediated transcytosis, which could be attributed to the small sizes (5-10 nm) and positive charge of the morphed PDMA. In vivo studies demonstrated that PDMA exhibited increased tumor accumulation and doxorubicin-loaded PDMA (PDMA/DOX) showed better antitumor efficacy. Overall, the small morph PDMA for enhanced deep tumor penetration via caveolae-mediated transcytosis could provide new inspiration for the design of anticancer drug delivery systems.


Subject(s)
Caveolae/metabolism , Nanoparticles/chemistry , Polyamines/chemistry , Transcytosis/physiology , Animals , Cell Line, Tumor , Dendrimers/chemistry , Doxorubicin/chemistry , Doxorubicin/metabolism , Doxorubicin/therapeutic use , Drug Carriers/chemistry , Fluorescent Dyes/chemistry , Humans , Hydrogen-Ion Concentration , Male , Mice , Mice, Inbred C57BL , Microscopy, Fluorescence , Nanoparticles/metabolism , Nanoparticles/therapeutic use , Neoplasms/drug therapy , Neoplasms/pathology , Particle Size , Tissue Distribution , Transplantation, Homologous
19.
Nanomicro Lett ; 13(1): 6, 2020 Oct 27.
Article in English | MEDLINE | ID: mdl-34138195

ABSTRACT

Cell therapy is a promising strategy for cancer therapy. However, its therapeutic efficiency remains limited due to the complex and immunosuppressive nature of tumor microenvironments. In this study, the "cell-chemotherapy" strategy was presented to enhance antitumor efficacy. M1-type macrophages, which are therapeutic immune cells with both of immunotherapeutic ability and targeting ability, carried sorafenib (SF)-loaded lipid nanoparticles (M1/SLNPs) were developed. M1-type macrophages were used both as therapeutic tool to provide immunotherapy and as delivery vessel to target deliver SF to tumor tissues for chemotherapy simultaneously. M1-type macrophages were obtained by polarizing macrophages using lipopolysaccharide, and M1/SLNPs were obtained by incubating M1-type macrophages with SLNP. Tumor accumulation of M1/SLNP was increased compared with SLNP (p < 0.01), which proved M1/SLNP could enhance tumor targeting of SF. An increased ratio of M1-type macrophages to M2-type macrophages, and the CD3+CD4+ T cells and CD3+CD8+ T cell quantities in tumor tissues after treatment with M1/SLNP indicated M1/SLNP could relieve the immunosuppressive tumor microenvironments. The tumor volumes in the M1/SLNP group were significantly smaller than those in the SLNP group (p < 0.01), indicating M1/SLNP exhibited enhanced antitumor efficacy. Consequently, M1/SLNP showed great potential as a novel cell-chemotherapeutic strategy combining both cell therapy and targeting chemotherapy.

SELECTION OF CITATIONS
SEARCH DETAIL
...